The Lockheed Martin F-35 Lightning II


F-35 or The Lockheed Martin F-35 Lightning II, is a family of single-seat, single-engine, fifth generation multirole fighters under development to perform ground attack, reconnaissance, and air defense missions with stealth capability. The F-35 has three main models, they are: the conventional takeoff and landing variant, the second is a short take off and vertical-landing variant, and the third is a carrier-based variant. The F-35 is descended from the X-35, the product of the Joint Strike Fighter (JSF) program. JSF development is being principally funded by the United States, with the United Kingdom and other partner governments providing additional funding. The partner nations are either NATO members or close U.S. allies. It is being designed and built by an aerospace industry team led by Lockheed Martin. The F-35 took its first flight on 15 December 2006.
The F-35 appears to be a smaller, slightly more conventional, single-engine sibling of the sleeker, twin-engine Lockheed Martin F-22 Raptor, and indeed drew elements from it. The exhaust duct design was inspired by the General Dynamics Model 200 design, which was proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship. For specialized development of the F-35B STOVL variant, Lockheed consulted with the Yakovlev Design Bureau, purchasing design data from their development of the Yakovlev Yak-141 "Freestyle". Although several experimental designs have been built and tested since the 1960s including the Navy's unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic, STOVL stealth fighter. The F-35 has a maximum speed of over Mach 1.6. With a maximum takeoff weight of 60,000 lb (27,000 kg), the Lightning II is considerably heavier than the lightweight fighters it replaces. In empty and maximum gross weights, it more closely resembles the single-seat, single-engine Republic F-105 Thunderchief, which was the largest single-engine fighter of the Vietnam war era. However the F-35's modern engine delivers over 60 percent more thrust in an aircraft of the same weight so that in thrust to weight and wing loading it is much closer to a comparably equipped F-16.
The F-35's main engine is the Pratt & Whitney F135. The General Electric/Rolls-Royce F136 was under development as an alternative engine until December 2011 when the manufacturers canceled work on it. The F135/F136 engines are not designed to supercruise in the F-35. The STOVL versions of both power plants use the Rolls-Royce LiftSystem, patented by Lockheed Martin and developed and built by Rolls-Royce. This system is more like the Russian Yak-141 and German VJ 101D/E than the preceding generation of STOVL designs, such as the Harrier Jump Jet in which all of the lifting air went through the main fan of the Rolls-Royce Pegasus engine. The Lift System is composed of a lift fan, drive shaft, two roll posts and a "Three Bearing Swivel Module" (3BSM). The 3BSM is a thrust vectoring nozzle which allows the main engine exhaust to be deflected downward at the tail of the aircraft. The lift fan is near the front of the aircraft and provides a counter-balancing thrust using two counter-rotating blisks.  It is powered by the engine's low-pressure (LP) turbine via a drive shaft and gearbox. Roll control during slow flight is achieved by diverting unheated engine bypass air through wing mounted thrust nozzles called Roll Posts. Like lift engines, the added lift fan machinery increases payload capacity during vertical flight, but is dead weight during horizontal flight. The cool exhaust of the fan also reduces the amount of hot, high-velocity air that is projected downward during vertical take off, which can damage runways and aircraft carrier decks. To date, F136 funding has come at the expense of other parts of the program, reducing the number of aircraft built and increasing their costs. The F136 team has claimed that their engine has a greater temperature margin which may prove critical for VTOL operations in hot, high altitude conditions. Pratt & Whitney is also testing higher thrust versions of the F135, partly in response to GE's claims that the F136 is capable of producing more thrust than the 43,000 lbf (190 kN) supplied by early F135s. The F135 has demonstrated a maximum thrust of over 50,000 lbf (220 kN) during testing. The F-35's Pratt & Whitney F135 is the most powerful engine ever installed in a fighter aircraft. The F135 is the second (radar) stealthy afterburning jet engine and like the Pratt & Whitney F119 from which it was derived, has suffered from pressure pulsations in the afterburner at low altitude and high speed or "screech". In both cases this problem was fixed during development of the fighter program. Turbine bearing health in the engine will be monitored with thermoelectric powered wireless sensors.

DISCLAIMER: The material content provided on this page is generated by another sources and consequently features user-generated content. While we do our best to stop offensive material appearing, ekotriyanggono.com cannot be held responsible for all of the material that may be displayed on this page. If you object to any article or picture, please leave us a comment in this page.

No comments:

Post a Comment